The numerical solution for Singular Integro- Differential Equations in Generalized Hölder spaces
نویسندگان
چکیده
We have suggested the numerical schemes of collocation methods for approximative solution of singular integrodifferential equations with kernels of Cauchy type. The equations are defined on the arbitrary smooth closed contours of complex plane. The researched methods are based on Fejér points. Theoretical background of collocation methods has been obtained in Generalized Hölder spaces. Singular Integrodifferential equations, Fejér points, Generalized Hölder spaces:
منابع مشابه
Collocation Methods for Numerical Solution of Singular Integro-Differential Equations in Generalized Hölder Spaces
We have suggested the numerical schemes of collocation methods and mechanical quadrature methods for approximative solution of singular integro-differential equations with kernels of Cauchy type. The equations are defined on the arbitrary smooth closed contours of complex plane. The researched methods are based on the descritization by Fejér points. Theoretical background for collocation method...
متن کاملThe Legendre Wavelet Method for Solving Singular Integro-differential Equations
In this paper, we present Legendre wavelet method to obtain numerical solution of a singular integro-differential equation. The singularity is assumed to be of the Cauchy type. The numerical results obtained by the present method compare favorably with those obtained by various Galerkin methods earlier in the literature.
متن کاملApplication of Tau Approach for Solving Integro-Differential Equations with a Weakly Singular Kernel
In this work, the convection-diffusion integro-differential equation with a weakly singular kernel is discussed. The Legendre spectral tau method is introduced for finding the unknown function. The proposed method is based on expanding the approximate solution as the elements of a shifted Legendre polynomials. We reduce the problem to a set of algebraic equations by using operational matrices....
متن کاملDiscrete Galerkin Method for Higher Even-Order Integro-Differential Equations with Variable Coefficients
This paper presents discrete Galerkin method for obtaining the numerical solution of higher even-order integro-differential equations with variable coefficients. We use the generalized Jacobi polynomials with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. Numerical results are presented to demonstrate the effectiven...
متن کاملNumerical solution of Fredholm integral-differential equations on unbounded domain
In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...
متن کامل